Affiliation:
1. Department of Mechanical Engineering, Engineering Faculty, Gazi University, Ankara, Turkey
Abstract
The flow and heat transfer characteristics of the TiO2-water nanofluid assuming as a single-phase in the rectangular offset strip fin structure for different Reynolds number (500-1000) and TiO2 nanoparticle volume concentration values (0-4%) were investigated numerically under 3-D, steady-state, and laminar flow conditions. Simulations were also performed for 1% and 4% nanoparticle volume concentrations of Al2O3-water nanofluid, and the results were compared with those of TiO2-water nanofluid. Results show that when the TiO2-water nanofluid is used, the heat transfer rate, heat transfer coefficient, and Nusselt number increase with increasing both Reynolds number and nanoparticle volume concentration, and parallel to these, both pressure loss, and pumping power increase. Considering the values of the performance evaluation criteria number, it is clear that the use of TiO2-water nanofluid in offset strip fin structure at all Reynolds numbers examined between 1-4% volume concentration values is quite advantageous. It is observed that TiO2-water nanofluid is much superior to Al2O3-water considering the performance evaluation criteria number. When the Reynolds number is 1000 and the volume concentration value of the TiO2 nanoparticle is 4%, the performance evaluation criteria number value is found to be 1.19, that is, there is a 19% increase compared to water. It is considered that the results of this study can be used as important data on the design of automobile radiators, air-conditioning, and defense.
Publisher
National Library of Serbia
Subject
Renewable Energy, Sustainability and the Environment
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献