Exergy destruction rate minimization in the absorber of a double effect vapor absorption system

Author:

Mushtaq Muhammad1,Kamran Muhammad2,Yaqoob Haseeb3,Jamil Muhammad3,Shafiq Muhammad3,Rehman Tauseef4,Ali Hafiz5

Affiliation:

1. Department of Mechanical Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan + Faculty of Engineering, University of Engineering & Technology, Lahore, Pakistan

2. Faculty of Engineering, University of Engineering & Technology, Lahore, Pakistan

3. Department of Mechanical Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan

4. Mechanical Engineering Department, Quaid-e-Azam College of Engineering and Technology Sahiwal, Pakistan

5. Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Abstract

Despite the wide applications of multi-effect vapor absorption systems, their energy requirement is relatively higher. Also, their exergy analyses found in the literature reveal that the exergy destruction rate at the absorber is quite significant and has the potential for improvement in its energy efficiency. In this work, the exergy destruction rate at the absorber is minimized using the penalty factor method against the optimized generator temperature of the double-effect vapor absorption system by considering absorber, evaporator, and condenser temperatures into consideration. Modeling of the double-effect vapor absorption system was performed using a thermodynamic toolbox in SIMULINK. The present model employed a refrigerant heat exchanger to enhance the system cooling capacity. The Liquid-vapor ejector valve at the absorber also improved the mixing of the solution and refrigerant vapor resulting in lower irreversibility of the system. Results show that the coefficient of a performance increase by 2.4 % with refrigerant heat exchanger and exergy loss at absorber decrease by 9.4 % with ejector. The optimum performance was seen at the condenser and evaporator temperatures of 308.8 K and 278.1 K, respectively with an 8.2 % improvement in exergetic efficiency. Finally, it is concluded that the multi-effect absorption system shows better performance by minimizing the irreversibility.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3