The influence of pet containers on antimony concentration in bottled drinking water

Author:

Peric-Grujic Aleksandra1,Radmanovac Aleksandar1,Stojanov Aleksander1,Pocajt Viktor1,Ristic Mirjana1

Affiliation:

1. Faculty of Technology and Metallurgy, Belgrade

Abstract

Antimony trioxide (Sb2O3) is the most frequently used catalyst in the polyethylene terephthalate (PET) manufacture. As a result, antimony is incorporated into PET bottles at concentration level of 100-300 mg/kg. PET containers are used for drinking water and beverages, as well as food packaging and in the pharmaceutical industry. Thus, it is important to understand the factors that may influence the release of antimony from the catalysts into water and other products, since antimony is potentially toxic trace element. In this paper, the antimony content in nine brands of bottled mineral and spring water from Serbia, and seven brands of bottled mineral and spring water from EU countries was analyzed. The measurements were conducted using the inductively coupled plasma-mass spectrometry (ICP-MS) technique. In the all examined samples the antimony concentration was bellow the maximum contaminant level of 5 ?g/L prescribed by the Serbian and EU regulations. Comparison of the content of antimony in PET bottled waters with the content of antimony in water bottled commercially in glass and the natural content of antimony in pristine groundwaters, provides explicit evidence of antimony leaching from PET containers. Since waters bottled in PET have much greater concentration ratio of Sb to Pb than corresponding pristine groundwaters, it can be assumed that bottled waters cannot be used as the relavant source for the study of the natural antimony content in groundwaters. There is a clear relation between the quality of water in bottles (composition, ion strength) and antimony leaching rate. Moreover, while the rate of antimony leaching is slow at temperatures below 60 oC, at the temperature range of 60-80 oC antimony release occurs and reaches maximum contaminant level rapidly. As antimony can cause both acute and chronic health problems, factors that promote the increase of antimony concentration should be avoided.

Publisher

National Library of Serbia

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3