Solid state synthesis of extra phase-pure Li4Ti5O12 spinel

Author:

Veljkovic I.1,Poleti D.2,Karanovic Lj.3,Zdujic M.4,Brankovic G.5

Affiliation:

1. Innovation Center, Faculty of Technology & Metallurgy, Belgrade

2. Department of General and Inorganic Chemistry, Faculty of Technology and Metallurgy, Belgrade

3. Laboratory of Crystallography, Faculty of Mining and Geology, Belgrade

4. Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade

5. Institute for Multidisciplinary Studies, Belgrade

Abstract

Extra phase-pure Li4Ti5O12 spinel with particle sizes less than 500 nm was synthesized by solid state reaction of mechanochemicaly activated mixture of nano anatase and Li2CO3 for a very short annealing time, 4 h at 800?C. Structural and microstructural properties, the mechanism of solid state reaction between anatase and Li2CO3 as well as thermal stability of prepared spinel were investigated using XRPD, SEM and TG/DSC analysis. The mechanism of reaction implies decomposition of Li2CO3 below 250?C, formation of monoclinic Li2TiO3 as intermediate product between 400 and 600?C and its transformation to Li4Ti5O12 between 600-800?C. The spinel structure is stable up to 1000?C when it is decomposed due to Li2O evaporation.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3