Computational fluid dynamics parametric investigation for two-phase flow of ammonia-water mixing in bubble pump tube

Author:

Benhmidene Ali1,Arjun Kozhikkatil2,Chaouachi Bechir1

Affiliation:

1. Research Unit, Environment, Catalysis and Process Analysis, The National School of Engineering of Gabes, Tunisia

2. Department of Mechanical Engineering, Matha College of Technology (APJ Abdul Kalam Technological University), North Paravur, Kerala, India

Abstract

The 2-D numerical simulation of two-phase NH3-water flowing under uniformly heated tube is used. The ANSYS FLUENT is used to predict the time evolution of thermal and hydrodynamic parameters of the bubble pump. Phase-dependent turbulent models are used to calculate the turbulent viscosity of each phase. Through user-defined functions, different interfacial force models and the wall boiling model are implemented in the code. The simulation results show a slow oscillation of hydrodynamic parameters such as: pressure, mass flux, vapor velocity, and liquid velocity during the initial stage of operation. However, a vigorous oscillation is detected for the temperature behavior. The amplitude and period of oscillation decrease with the heat input increasing. By using the void fraction contour, it is possible to predict the flow regime along the bubble pump at different times of the operation. The domination of flow regime is the function of heat flux too. It is bubbly to slug for heat fluxes less than 5 kW/m? and transits from churn to annular for 15 kW/m? and 50 kW/m? of heat flux.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Lens Aperture for Analysis of Bubble Image Size Microbubble Generator Aeration System;IOP Conference Series: Earth and Environmental Science;2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3