Electro-acustic influence of the measuring system on the photoacoustic signal amplitude and phase in frequency domain

Author:

Aleksic Sanja1ORCID,Markushev Dragana1,Pantic Dragan1,Rabasovic Mihajlo2,Markushev Dragan2,Todorovic Dragan3

Affiliation:

1. Faculty of Electronic Engineering, Niš

2. Institute of Physics, Belgrade

3. Institute for Multidisciplinary Research, Belgrade

Abstract

The paper discusses the most common impacts of the measuring system on the amplitude and phase of the photoacoustic signals in the frequency domain using the open-cell experimental set-up. The highest signal distortions are detected at the ends of the observed modulation frequency range from 20 Hz to 20 kHz. The attenuation of the signal is observed at lower frequencies, caused by the electronic filtering of the microphone and sound card, with characteristic frequencies of 15 Hz and 25 Hz. At higher frequencies, the dominant signal distortions are caused by the microphone acoustic filtering, having characteristic frequencies around 9 kHz and 15 kHz. It has been found that the microphone incoherent noise, the so called flicker noise, is negligibly small in comparison to the signal and does not affect the signal shape. However, a coherent noise originating from the power modulation system of the light source significantly affects the shape of the signal in the range greater than 10 kHz. The effects of the coherent noise and measuring system influence are eliminated completely using the relevant signal correction procedure targeting the photoacoustic signal generated by the sample.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3