Engine performance and emission characteristics of microwave-produced biodiesel blends

Author:

Hamdi Fakher1,Yahya Ilhem1,Gassoumi Mehrez1,Fazal Aliya2,Ennetta Ridha1,Soyhan Serhad3

Affiliation:

1. Mechanical Modelling, Energy and Materials, National School of Engineers, Gabes University, Zrig, Gabes, Tunisia

2. Department of Chemistry, Fatima Jinnah Women University, Rawalpindi, Pakistan

3. Engineering Faculty, Mechanical Engineering Department, Sakarya University, Sakarya, Turkey

Abstract

The main objective of this research is to investigate, experimentally, the effects of biodiesel blends on the performance and emissions of a diesel engine. Measurements were carried out on a single-cylinder, four-stroke, and air-cooled compression-ignition engine, under half and full load conditions. Engine speed was varied from 1000 to 3000 rpm. Biodiesel was produced by transesterification process of sunflower oil with ethanol, using microwave-assisted heating reactor. Three biodiesel-diesel mixtures: containing 5%, 10% and 20% by volume of biodiesel, respectively, have been tested and compared to pure diesel fuel. The effects of these biodiesel blends on the engine operating characteristics such as brake specific fuel consumption, brake power, brake thermal efficiency, brake mean effective pressure and on carbon monoxide, carbon dioxide and nitrogen oxides emissions, have been investigated. It was noticed that, at full load, the specific fuel consumptions of biodiesel blends were higher compared to the pure diesel fuel, but no change was observed under 1/2 load. An improvement in the brake thermal efficiency, under 1/2 load, was obtained, but at full load, for medium and high-speed, the thermal efficiencies of all biodiesel blends showed a decrease compared to pure diesel fuel. Concerning pollutants emissions, a decrease in carbon monoxide emissions of all biodiesel blends was noticed. The best result in carbon monoxide emissions was achieved by the mixture containing 10% by volume of biodiesel with an average reduction value close to 40%. In addition, a significant reduction in nitrogen oxides emissions was observed for the three biodiesel blends.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3