Macroporous monoliths based оn natural mineral sources, clay аnd diatomite

Author:

Kokunesoski Maja1ORCID,Stankovic Miroslav2ORCID,Vukovic Marina3ORCID,Majstorovic Jelena4ORCID,Saponjic Djordje1ORCID,Ilic Svetlana1ORCID,Saponjic Aleksandra1ORCID

Affiliation:

1. Institute of Nuclear Science “Vinča”, Institute of National Significance for the Republic of Serbia, University of Belgrade, Belgrade, Serbia

2. Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia

3. Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia

4. Faculty of Mining and Geology, University of Belgrade, Belgrade, Serbia

Abstract

Macroporous silica ceramic was obtained using clay and diatomite. Boric acid as a low-cost additive in the amount of 1 wt% was used. These porous materials were obtained at low forming pressure (40-80 MPa) and lower sintering temperature (850-1300 ?C) for 4h in air. The influence of boric acid, forming pressure, and sintering temperature on the microstructure, porosity parameters, and mechanical properties of obtained porous monoliths were investigated. As-received and the modified samples were characterized by X-ray diffraction, FTIR, SEM, and mercury porosimetry measurements. As for modified clay and diatomite, they were pressed at 60 MPa and then sintered at 1150 ?C, obtaining porosities of about 10 % and 60 %, respectively. Both of the analyzed samples had the pore diameter in the range of macroporous materials. The pore diameters of clay samples are ranging from 0.1-10 ?m, whereas the pore diameter of diatomite samples was slightly lower with values ranging from 0.05-5 ?m. Modified diatomite samples have a lower Young modulus in comparison to modified clay samples.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3