In silico analysis of transcription factor binding sites in promoters of germin-like protein genes in rice

Author:

Ilyas Muhammad1,Naqvi Syed2,Mahmood Tariq1

Affiliation:

1. Quaid-i-Azam University, Department of Plant Sciences, Plant Biochemistry and Molecular Biology Lab, Islamabad, Pakistan

2. PMAS Arid Agriculture University, Department of Biochemistry, Rawalpindi, Pakistan

Abstract

Germins (GERs) and germin-like proteins (GLPs) play important roles in responses to various stresses; however, their function is still not fully understood. Significant insight into their function can be obtained by analyzing their promoters. In the present study, the 5' upstream promoters (1000 bp) of 43 Asian rice (Oryza sativa var. Japonica) GLP genes were retrieved from the Plant Ensemble, based on the Rice Annotation Project database (RAP-DB). Phylogenetic analysis via MEGA6 showed a narrow genetic background (0.2%) with a Tajima neutrality value (?) of 0.69. Overall, 4234 transcription factor (TF) binding sites (TFBSs) were found on chromosomes 1, 2, 3, 4, 5, 8, 9, 11 and 12 via ?MatInspector? from 90 different TF families using a total of 444 families. Common TFs and DiAlign analyses showed that arabidopsis homeobox protein (AHBP), MYB-like proteins (MYBL) and vertebrate TATA-box-binding protein (VTBP) were the most abundant, common and evolutionarily conserved elements in the upstream region from 0 to -800. Finding their mutual interaction via Farmworker analysis uncovered three new cisregulatory modules (VTBP_VTBP, MYBS_MYBS, and AHBP_VTBP), which appear to be decisive for OsGLP regulation. In silico functional analysis via ModelInspector revealed 77 cis-regulatory modules, each comprised of two elements, among which DOFF_OPAQ_03 and GTBX_MYCL_01 were the most frequent and mostly found on chromosome 8 and 12, indicating that the combinatorial interaction of these elements has a fundamental role in various biological processes. The study revealed the importance of these elements in regulating OsGLP expression that will help in predicting the role of these genes in various stresses, and can have application in biotechnology.

Publisher

National Library of Serbia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3