Electrodes for transcutaneous (surface) electrical stimulation

Author:

Keller Thierry1,Kuhn Andreas2

Affiliation:

1. Biorobotics Department, Fatronik-Tecnalia, San Seabstian, Spain

2. Altran AG, Zurich, Switzerland

Abstract

In therapeutic and functional applications transcutaneous electrical stimulation (TES) is still the most frequently applied technique for muscle and nerve activation despite the huge efforts made to improve implantable technologies. Stimulation electrodes play the important role in interfacing the tissue with the stimulation unit. Between the electrode and the excitable tissue there are a number of obstacles in form of tissue resistivities and permittivities that can only be circumvented by magnetic fields but not by electric fields and currents. However, the generation of magnetic fields needed for the activation of excitable tissues in the human body requires large and bulky equipment. TES devices on the other hand can be built cheap, small and light weight. The weak part in TES is the electrode that cannot be brought close enough to the excitable tissue and has to fulfill a number of requirements to be able to act as efficient as possible. The present review article summarizes the most important factors that influence efficient TES, presents and discusses currently used electrode materials, designs and configurations, and points out findings that have been obtained through modeling, simulation and testing.

Publisher

National Library of Serbia

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3