The SnO2 nanotube with CNT core structure (SnO2@void@CNT) and graphene composite electrode for Li-ion batteries

Author:

Alaf Mirac1

Affiliation:

1. Department of Metallurgical and Materials Engineering, Bilecik Seyh Edebali University, Bilecik, Turkey

Abstract

In this study, the problem of volume expansion and agglomeration of SnO2-based electrode materials has been solved with a unique and multifaced approach. Nanosized SnO2 is coated around CNT with a void and this structure is decorated between graphene sheets. The problem of aggregation and volume expansion has been solved with nanostructure and voided structure. Besides, conductivity and buffering contributions have been provided by the production composite with graphene and CNT. Herein graphene layers were decorated SnO2 nanotube with CNT core structure (SnO2@void@CNT) and used as an anode for Li-ion battery. The electrodes were produced by vacuum filtration technique as flexible and free-standing with no any binder. To compare, pure SnO2 and SnO2 decorated graphene/CNT skeleton anodes were prepared and characterized. The SnO2@void@CNT/graphene anode exhibited excellent cycling performance and rate capability properties.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3