Final method for selection of the optimal solution for deep energy renovation of a building

Author:

Jurjevic Ruzica1,Dergestin Denis1,Knezovic Frano2,Bacan Ivan1

Affiliation:

1. Energy Institute Hrvoje Požar, Zagreb, Croatia

2. TRITEH Ltd, Zagreb, Croatia

Abstract

The great potential for reduction of CO2 emissions lies in the deep energy renovation of buildings that exploits the full potential of improving energy efficiency in buildings to maximize energy savings and minimize energy costs. However, in addition to the technical parameters, it is necessary to analyze the willingness of the client to pay for deep energy renovation. This paper presents a methodology applicable to all types of buildings that in a relatively short time provides an optimal solution that meets both parameters ? technical and economic, while satisfying the legal requirements. The method was tested by simultaneous use of DESIGNBUILDER software package (which uses ENERGYPLUS as its dynamic simulation engine), PYTHON and SQL programming languages on an office building in the city of Zagreb, where a total of 720 combinations of building deep energy renovation were analyzed. In the analyzed case, it was proved that the application of this methodology results in obtaining the output values 20.51 times faster than the classical input of all combinations of deep energy renovation of the building in software tools. In addition, the probability of human error is much lower by applying this methodology given large amount of input data.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3