Experimental investigation of the effect of the use of nanoparticle additional biodiesel on fuel consumption and exhaust emissions in tractor using a coated engine

Author:

Ozer Salih1,Haciyusufoglu Fatih2,Vural Erdinc3

Affiliation:

1. Faculty of Engineering and Architecture, Mus Alparslan University, Mus, Turkey

2. Aydin Adnan Menderes University, Vocational School, Aydin, Turkey

3. Germencik Yamanturk Vocational School, Aydin Adnan Menderes University, Aydin, Turkey

Abstract

This study focuses on reducing the fuel consumption and exhaust gas emission values of the tractor used in the agricultural field. With the additive added to the fuel and the coating of the tractor engine, the fuel consumption values were reduced, and agricultural production costs were tried to be reduced. On the other hand, exhaust emission values were also tried to be reduced and thus a more environmentally friendly production method was aimed to be adopted. For this reason, the cylinders of the tractor engine were coated with Al2O3 + 13%TiO2 metal powders mixed by mass using the plasma spray method. All experiments were repeated by attaching these coated pistons to the engine. The fuel used in the experiments was purchased from a commercial company and the nanoparticle (molybdenum) additive was added to the biodiesel at the rates of 25 ppm, 50 ppm, 100 ppm, and 200 ppm by mass. The fuel mixtures obtained in the coated and uncoated engine, when the engine is in the full throttle position, using the PTO load test unit at 1000 rpm, 1200 rpm, 1400 rpm, 1600 rpm, 1800 rpm, and 2000 rpm. It has been tested by loading at 2200 rpm, 2400 rpm, and 2600 rpm engine speeds. Code for the Official Testing of Agricultural and Forestry Tractor Performance standards were adhered to during all engine tests. The results showed that coating the cylinders and adding nanoparticles into biodiesel reduces the fuel consumption value, increases the exhaust gas temperature, decreases HC, CO, and PM emissions, and increases NOx emissions.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3