Flexural strength and modulus of autopolimerized poly (methyl methacrylate) with nanosilica

Author:

Balos Sebastian1ORCID,Pilic Branka2,Petrovic Djordje3,Petronijevic Branislava3,Sarcev Ivan3

Affiliation:

1. Faculty of Technical Sciences, Department for Production Engineering, Novi Sad

2. Faculty of Technology, Department of Materials Engineering, Novi Sad

3. Faculty of Medicine, Novi Sad

Abstract

Background/Aim. Autopolymerized, or cold polymerized poly(methyl methacrylate) class of materials have a lower mechanical properties compared to hot polymerized poly(methyl methacrylate), due to a limited time of mixing before the polymerization process begins. The aim of this study was to test the effect of different relatively low nanosilica contents, in improving mechanical properties of the cold polymerized poly(methyl methacrylate). Methods. A commercially available autopolymerized poly(methyl methacrylate) denture reline resin methyl methacrylate liquid component was mixed with 7 nm after treated hydrophobic fumed silica and subsequently mixed with poly(methyl methacrylate) powder. Three nanosilica loadings were used: 0.05%, 0.2% and 1.5%. Flexural modulus and strength were tested, with one way ANOVA followed by Tukey?s test. Furthermore, zeta potential, differential scanning calorimetry, scaning electrone microscopy and energy dispersive X-ray analyses were performed. Results. Flexural modulus and strength of poly(methyl methacrylate) based nanocomposites were statistically significantly increased by the addition of 0.05% nano-SiO2. The increase in nanosilica content up to 1.5% does not contribute to mechanical properties tested, but quite contrary. The main reason was agglomeration, that occurred before mixing of the liquid and powder component and was proved by zeta potential measurement, and after mixing, proved by scanning electrone microscopy and energy dispersive x-ray analyses. Conclusions. Addition of 7 nm 0.05% SiO2 is the most effective in increasing flexural modulus and strength of autopolimerized poly(methyl methacrylate).

Publisher

National Library of Serbia

Subject

Pharmacology (medical),General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3