Chemical kinetic analysis of in-cylinder ion current generation under direct water injection within internal combustion Rankine cycle engine

Author:

Kang Zhe1,Lv Yang2,Zhou Nanxi2,Fu Lezhong3,Deng Jun4,Wu Zhijun4

Affiliation:

1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China + College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, China

2. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, China

3. United Automotive Electronic Systems Co. Ltd., Shanghai, China + School of Automotive Studies, Tongji University, Tongji, China

4. School of Automotive Studies, Tongji University, Tongji, China

Abstract

Direct water injection provides feasible solution for combustion optimization and efficiency enhancement within internal combustion Rankine cycle engine, while the feedback signal of close-loop direct water injection control is still absent. Ion current detection monitors in-cylinder electron variation which shows potential in revealing direct water injection process. For better understanding of unprecedented augment of ion current signal under direct water injection within internal combustion Rankine cycle engine, a chemical kinetic model is established to calculate the effect of intake oxygen fraction, fuel quantity, initial temperature, and residual water vapor on in-cylinder electron formation based on GRI Mech 3.0 and ion current skeleton mechanism. The simulation results indicate direct water injection process show significant impact on in-cylinder electron formation through chemical interactions between H2O and other intermediate species including HO2, O2, CH3, and H, these reactions provides additional OH radical for propane oxidation facilitation, which result in large portion of CH radical formation and therefore, lead to higher in-cylinder electron generation. The initial temperature plays a vital role in determining whether residual water vapor show positive or negative effect by in-cylinder temperature co-ordination of direct water injection. Results of this work can be used to explain phenomenon related to direct water injection and ion current signal variation under both internal combustion Rankine cycle or traditional petrol engine.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3