Affiliation:
1. School of Mathematics, Hangzhou Normal University, Hangzhou, China
2. Farzanegan Campus, Semnan University, Semnan, Iran
Abstract
In this paper, we present a new characterization of g-Drazin inverse in a
Banach algebra. We prove that an element a in a Banach algebra has g-Drazin
inverse if and only if there exists x ? A such that ax = xa, a-a2x ? A
qnil. As an application, we obtain the sufficient and necessary conditions
for the existence of the g-Drazin inverse for certain 2 x 2 anti-triangular
matrices over a Banach algebra. These extend the results of Koliha (Glasgow
Math. J., 38(1996), 367-381), Nicholson (Comm. Algebra, 27(1999), 3583-3592
and Zou et al. (Studia Scient. Math. Hungar., 54(2017), 489-508).
Publisher
National Library of Serbia
Reference19 articles.
1. C. Bu; K. Zhang and J. Zhao, Representation of the Drazin inverse on solution of a class singular differential equations, Linear Multilinear Algebra, 59(2011), 863-877.
2. S.L. Campbell, The Drazin inverse and systems of second order linear differential equations, Linear Multilinear Algebra, 14(1983), 195-198.
3. N. Castro-González and E. Dopazo, Representations of the Drazin inverse for a class of block matrices, Linear Algebra Appl., 400(2005), 253-269.
4. H. Chen, Rings Related Stable Range Conditions, Series in Algebra 11, World Scientific, Hackensack, NJ, 2011.
5. H. Chen and M. Sheibani, The g-Drazin invertibility in a Banach algebra, arXiv: 2203.07568v1 [math.RA] 15 Mar 2022.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献