Effect of cooling condition on the performance of thermoelectric power generation system coupling with phase change material module

Author:

Zou Jiapu1,Wu Zihua1,Liu Anbang2,Feng Shi1,Xie Huaqing1

Affiliation:

1. School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai , China

2. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, China

Abstract

In this study, a thermoelectric power generation (TEG) system coupling with phase change material (PCM) module for thermal control and storage has been fabricated. Bismuth Telluride (Bi2Te3) TEG devices were applied to convert heat into electricity and Sn-Ag-In alloy PCM was employed for heat storage. A cooling channel with pure water and graphene nanofluids as heat exchange media was attached tightly with the cold-sides of the TEG devices. The effects of the flow rate of cooling water and the mass fraction of graphene nanofluids on the heat transfer process and the performance of the as fabricated TEG-PCM coupling system have been investigated. It is found that increasing the heat exchange capability of the cooling channel would help the PCM module to enhance the heat absorption and utilization of thermal energy from heat source, which in turn brings about the improvement of efficiency of TEG system. The output voltage of TEG system by using pure water for cooling is improved by 6.6%-13.1% with the acceleration of flow rate. Using graphene nanofluids as heat exchange media, the TEG system could achieve 7.2%-18.5% enhancement in outputvoltage with an increase in the mass fraction of the used nanofluid.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State of the art and future prospects for TEG-PCM Systems: A review;Energy for Sustainable Development;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3