Affiliation:
1. Infrared and Low Temperature Plasma Key Laboratory of Anhui Province, NUDT, Hefei, China + Advanced Laser Technology Laboratory of Anhui Province, NUDT, Hefei, China + State Key Laboratory of Pulsed Power Laser Technology, NUDT, Hefei, China
Abstract
In this study, a method based on ejector technology is proposed to effectively suppress the infrared radiation associated with the exhaust gas of special vehicles such as tanks, armored vehicles, and missile carriers. These vehicles emit exhaust gases at very high temperatures. First, a mathematical model of the exhaust pipe was established for the exhaust system of a certain type of special vehicle. Then, the 3-D flow field outside the exhaust pipe was numerically simulated using FLUENT 6.3 software. Thus, the temperature, pressure, and density of the exhaust-gas-flow field before and after adopting the proposed ejector technique were obtained. Second, the statistical narrowband model based on the Lorentzian profile was used to determine the average absorption coefficient of a narrow band. Then, the finite volume method was used to solve the radiation transfer equation in the gaseous medium. Finally, the spectral radiation brightness and mid-infrared radiation intensity distribution of the exhaust gas before and after adopting the ejector technique were obtained. Results show that the proposed method considerably decreased the infrared radiation intensity of the exhaust gas by approximately 70%. Thus, using the proposed ejector technology, the infrared radiation associated with the exhaust system of special vehicles can be effectively suppressed.
Publisher
National Library of Serbia
Subject
Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献