Online monitoring of the burning characteristics of single pulverized coal particle in O2/N2 and O2/CO2 environments

Author:

Abdul Gani Zeenathul1,Wall Terry2,Moghtaderi Behdad2

Affiliation:

1. Department of Mechanical Engineering, Francis Xavier Engineering College, Tirunelveli Tamil Nadu, India

2. Department of Chemical Engineering, University of Newcastle, Callaghan, NSW Australia

Abstract

The objective of this study is to compare the ignition and burning characteristics such as burnout times of volatiles and char, and ignition mechanism of single pulverized coal particle burning in air (O2/N2) and oxy (O2/CO2) environments. An entrained flow reactor with photo detector has been employed for this study. This technique involves online monitoring of radiation emission from an individual coal particle. Individual particles of sub-bituminous or lignite coal particle with size in the ranges of 106 - 125 micron and 180 - 212 micron particles have been injected into an air (O2/N2) or oxy (O2/CO2) environment inside an entrained flow reactor. The oxygen concentration in the ambient gas is varied between 10% to 50% by volume. The volatile and char burnout times have been obtained from time histories estimated from the radiation emitted by the particle. The results show an obvious increase in the burning rates of volatiles and char with increasing oxygen concentration. Further, when compared to N2 atmosphere, the burning rate and radiation intensity are found to be lower in CO2 atmosphere, especially at lower oxygen concentrations. An indication of the possible ignition mechanism has been outlined from the percentages of single and double peaks observed in the radiation emission histories. The complete experimental investigation shows that the burning rates of both volatiles and char are predominantly affected by the oxygen concentration, particle size and gas temperature. The theoretical results from a single particle model has been used to validate the trends and the combustion durations obtained from the present experimental study and is published as a separate manuscript.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3