A comparative study between nano-cadmium oxide and lead oxide reinforced in high density polyethylene as gamma rays shielding composites

Author:

Alharshan Gharam1,Aloraini Dalal1,Elzaher Mohamed2,Badawi Mohamed3,Alabsy Mahmoud4,Abbas Mahmoud4,El-Khatib Ahmed4

Affiliation:

1. Physics Department, Faculty of Science, Princess Nourah Bint Abdulrahaman University, Riyadh, Saudi Arabia

2. Department of Basic and Applied Science, Faculty of Engineering, Arab Academy for Science and Technology, Alexandria, Egypt

3. Department of Physics, Faculty of Science, Beirut Arab University, Beirut, Lebanon

4. Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt

Abstract

In this work, polymer composites of high density polyethylene reinforced by micro-sized and nanosized cadmium oxide, lead oxide, and a mixture of both with filler weight fraction of 30% were prepared by compression molding technique and characterized by scanning electron microscope. This investigation aims to present a comparative study between cadmium oxide and lead oxide according to their sizes as fillers in high density polyethylene polymeric matrix for gamma-radiation shielding applications. The mass and linear attenuation coefficients of the investigated composites were measured as a function of g-ray energies ranging from 59.53 keV to 1408.01 keV using standard radioactive point sources (241Am, 133Ba, 137Cs, 60Co, and 152Eu). The measurements were made with a narrow beam geometry setup using a well calibrated hyper pure germanium cylindrical detector. The theoretical values of the mass attenuation coefficients were evaluated using the XCOM program database. The experimental results demonstrated that, according to the filler size, cadmium oxide composite is better as a gamma absorber in the energy region less than 81 keV, while lead oxide composite is better in the energy region greater than 81 keV. Moreover, for the same chemical structure and weight fraction of the composite, nano fillers show better attenuation performance than micro fillers in high density polyethylene based radiation shielding material.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3