Affiliation:
1. Chongqing University of Science and Technology, College of Architecture and Civil Engineering, Chongqing, P.R. China
2. Chongqing University, College of Aerospace Engineering, Chongqing, P.R. China
Abstract
A quasi-3-D soil-air heat and mass transfer model was established to simulate the process of heat and moisture exchange in the vertical and double soil-air heat exchanger. At the same time, the heat and moisture exchange were considered in the model, and the air-flow parameter equation and heat transfer control equation were combined. The MATLAB was used for the calculation procedure, and the model was solved using an iterative method. The average relative error of the numerical calculation was less than 2%. Moreover, the heat exchanger performance influence factors were validated. The simulation results showed that: with the lengthening of the heat exchanger, the smaller the air-flow, the shorter the running time, the air temperature and moisture content at the outlet of the heat exchanger were lower, the cooling and dehumidification effect were more obvious. However, the magnitude of change gradually decreased, and finally stabilized.
Publisher
National Library of Serbia
Subject
Renewable Energy, Sustainability and the Environment
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献