Determination of degradation level during cavitation erosion of zircon based ceramic

Author:

Pavlovic Marko1,Dojcinovic Marina1,Martinovic Sanja2ORCID,Vlahovic Milica2ORCID,Stevic Zoran3,Jovanovic Marina4,Volkov-Husovic Tatjana1ORCID

Affiliation:

1. Faculty of Technology and Metallurgy, Belgrade

2. Institute of Chemistry, Technology and Metallurgy, Belgrade

3. Technical Faculty, Bor

4. University of Zenica, Faculty of Metallurgy and Materials Science, Zenica, Bosnia and Herzegovina

Abstract

Mechanical shock of zircon based ceramic induced by cavitation erosion testing was investigated in this study. Several parameters were followed in order to determine level of material degradation during the cavitation erosion testing. Mass loss was taken as a conventional criterion for material degradation, while the level of surface degradation was evaluated by image and thermal imaging analyses. Results show high cavitation resistance of zircon ceramics and their suitability when vigorous cavitation erosion environment is expected.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3