Investigation of dye-sensitized solar cell performance based on vertically aligned TiO2 nanowire photoanode

Author:

Shougaijam Biraj1,Singh Salam1

Affiliation:

1. Department of Electronics and Communication Engineering, Manipur Technical University, Takyelpat, Manipur, India

Abstract

In this work, we present our results related to the development of Dye-Sensitized Solar Cells (DSSCs) based on vertically aligned TiO2-nanowire (NW) and Ag nanoparticle (NP) assisted vertically aligned TiO2-NW (TAT) photoanode fabricated by the glancing angle deposition (GLAD) technique on fluorine doped thin oxide (FTO) substrates. The scanning electron microscopy (SEM) analysis reveals that the Ag-NP assisted vertically aligned TiO2-NW photoanode was successfully deposited on FTO substrates. The average length and diameter of the NW have been measured to be ~ 350 nm and ~ 90 - 100 nm, respectively. Moreover, transmission electron microscopy (TEM) and X-ray diffraction (XRD) manifest the presence of small crystals of TiO2 and Ag. Further, the absorption spectrum analysis reveals that the incorporation of Ag-NP in TiO2-NW increases absorption in the visible region, but decreases the efficiency of the cell after the incorporation of the nanoparticle. The calculated bandgap of the annealed Ag-NP (30 nm) assisted TiO2-NW (TAT@30nm) sample from the photoluminescence (PL) graph is ~ 3.12 eV. Finally, it is observed that the TiO2-NW based DSSC device shows better performance in terms of photo conversion efficiency (PCE) compared to the TAT@30nm photoanode based device, with an efficiency of ~0.61 % from the former and ~ 0.24 % from the latter. This reduction in the efficiency of TAT@30nm based devices is due to the larger size of Ag-NP, in which the nanoaprticle acts as an electron sink and acts as a blocking layer.

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3