Affiliation:
1. Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong, P.R. China
2. Software College/Center of Discrete Mathematics, Fuzhou University, Fuzhou, Fujian, P.R. China
Abstract
Let G be a graph of order n. Let ?1 , ?2 , . . . , ?n be the eigenvalues of the adjacency matrix of G, and let ?1 , ?2 , . . . , ?n be the eigenvalues of the Laplacian matrix of G. Much studied Estrada index of the graph G is defined n as EE = EE(G)= ?n/i=1 e?i . We define and investigate the Laplacian Estrada index of the graph G, LEE=LEE(G)= ?n/i=1 e(?i - 2m/n). Bounds for LEE are obtained, as well as some relations between LEE and graph Laplacian energy.
Publisher
National Library of Serbia
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献