Numerical investigations on solute transport and freckle formation during directional solidification of nickle-based superalloy ingot

Author:

Cui Jiajun1,Li Baokuan2,Liu Zhongqiu2,Qi Fengsheng2,Zhang Beijiang3

Affiliation:

1. School of Metallurgy, Northeastern University, Shenyang, China + High Temperature Materials Research Division, Central Iron & Steel Research Institute, Beijing, China

2. School of Metallurgy, Northeastern University, Shenyang, China

3. High Temperature Materials Research Division, Central Iron & Steel Research Institute, Beijing, China

Abstract

In order to investigate the solute distribution and freckles formation during directional solidification of superalloy ingots, a mathematical model with coupled solution of flow field, solute and temperature distribution was developed. Meanwhile, the reliability of this model was verified by the experimental and simulation results in relevant literatures. The three-dimensional directional solidification process of Ni-5.8wt%Al-15.2wt%Ta superalloy ingot was simulated, and then the dynamic growth of solute enrichment channels was demonstrated inside the ingot. Freckles formation under different cooling rates was studied, and the local segregation degree inside the ingot was obtained innovatively after solidification. The results show that the number of freckles formed at the top gradually decreases, and so do the degree of solute enrichment at these freckles with the increase of cooling rate. Moreover, the relative and volume-averaged segregation ratio is defined to describe the segregation degree inside the ingot. The span of relative segregation ratio for positive segregation is wider than that for negative segregation, but it accounts for less of total volume. As the cooling rate increases from 0.1 K/s to 1.0 K/s, the proportion of weak segregation (-20%~20%) increases significantly from 26% to 41%, so that the segregation degree is weakened in general. By analyzing the freckles formation and segregation degree inside the ingot, the numerical simulation results can provide a theoretical basis for optimizing the actual production process to suppress the freckle defects.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3