End-to-end diagnosis of cloud systems against intermittent faults

Author:

Wang Chao1,Fu Zhongchuan2,Huo Yanyan3

Affiliation:

1. Computer School, Beijing Information Science and Technology University, Beijing, China + Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing, China

2. Computer Science & Technology Department, Harbin Institute of Technology, Heilongjiang, China

3. Computer School, Beijing Information Science and Technology University, Beijing, China

Abstract

The diagnosis of intermittent faults is challenging because of their random manifestation due to intricate mechanisms. Conventional diagnosis methods are no longer effective for these faults, especially for hierachical environment, such as cloud computing. This paper proposes a fault diagnosis method that can effectively identify and locate intermittent faults originating from (but not limited to) processors in the cloud computing environment. The method is end-to-end in that it does not rely on artificial feature extraction for applied scenarios, making it more generalizable than conventional neural network-based methods. It can be implemented with no additional fault detection mechanisms, and is realized by software with almost zero hardware cost. The proposed method shows a higher fault diagnosis accuracy than BP network, reaching 97.98% with low latency.

Publisher

National Library of Serbia

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3