Simulation and calculation of the contribution of hyperpolarization-activated cyclic nucleotide-gated channels to action potentials

Author:

Liao Liping1,Lin Xianguang1,Hu Jielin2,Wu Xin2,Yang Xiaofei1,Wang Wei2,Li Chenhong1

Affiliation:

1. Central University for Nationalities, College of Biomedical Engineering, Laboratory of Membrane Ion Channels and Medicine, State Ethnic Affairs Commission, Key Laboratory of Cognitive Science, South-Wuhan, China

2. Academic Affairs Office of Hubei Polytechnic University, Huangshi, Huibei, P.R. China

Abstract

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel, which mediates the influx of cations, has an important role in action potential generation. In this article, we describe the contribution of the HCN channel to action potential generation. We simulated several common ion channels in neuron membranes based on data from rat dorsal root ganglion cells and modeled the action potential. The ion channel models employed in this paper were based on the Markov model. After modifying and calibrating these models, we compared the simulated action potential curves under the presence and absence of an HCN channel and calculated that the proportional contribution of the HCN channel in the potential recovery phase was 33.39%. This result indicates that the HCN channel is critical in assisting membrane potential recovery from a hyperpolarized state to a resting state. Furthermore, we showed how the HCN channel modifies the firing of the action potential using mathematic modeling. Our results indicated that although the loss of the HCN channel made recovery of the membrane potential more difficult from the most negative point to resting in comparison with the control, the firing rate of the action potential increased in certain circumstances. We present a novel explanation for the HCN channels? mechanism in neuron action potential generation using mathematical models.

Publisher

National Library of Serbia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3