Energy conservation and heat transfer enhancement for mixed convection on the vertical galvanizing furnace

Author:

Mei Dan1,Zhu Yuzheng2,Xu Xuemei2,Xing Futang2

Affiliation:

1. Hubei Provincial Industrial Safety Engineering Technology Research Center, Wuhan University of Science and Technology, Wuhan Hubei, China + Old Dominion University, Department of Mechanical and Aerospace Engineering, Norfolk Virginia, USA

2. Wuhan University of Science and Technology, Hubei Provincial Industrial Safety Engineering Technology Research Center, Wuhan Hubei, China + Wuhan University of Science and Technology, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Met

Abstract

The alloying temperature is an important parameter that affects the properties of galvanized products. The objective of this study is to explore the mechanism of conjugate mixed convection in the vertical galvanizing furnace and propose a novel energy conservation method to improve the soaking zone temperature based on the flow pattern and heat transfer characteristics. Herein, the present study applied the k-? two-equation turbulence model to enclose the Navier-Stokes fluid dynamic and energy conservation equations, and the temperature distributions of the steel plate and air-flow field in the furnace were obtained for six Richardson numbers between 1.91 ? 105 and 6.30 ? 105. In the industrial practice, the side baffles were installed at the lateral opening of the cooling tower to alter the height of vertical flow passage, which affected the Richardson number. The results indicate that the Richardson number of 2.4 ? 105 generated the highest heat absorption and maximal temperature in the steel plate due to the balance between natural and forced convection. Furthermore, the results of the on-line experiments validated the simulation research. The method enhanced the steel plate temperature in the soaking zone without increasing the heat power, thereby characterizing it as energy conservation technology.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3