Arsenate and arsenite adsorption in relation with chemical properties of alluvial and loess soils

Author:

Rukh Shah1,Akhtar Saleem1,Mehmood Ayaz2,Hassan Sayed3,Khan Khalid1,Naqvi Syed4,Imran Muhammad1

Affiliation:

1. PMAS-Arid Agriculture University, Department of Soil Science & SWC, Rawalpindi, Pakistan

2. University of Haripur, Department of Agricultural Sciences, Haripur, Pakistan

3. University of Georgia, Department of Crop and Soil Sciences, Athens, USA

4. PMAS-Arid Agriculture University, Institute of Biochemistry and Biotechnology, Rawalpindi, Pakistan

Abstract

Arsenic is one of the most toxic elements in the soil environment. Understanding of the arsenic adsorption chemistry is essential for evolving the extent of soil and groundwater contaminations. This research was conducted to determine the variation in adsorption behaviour of arsenite and arsenate with depth in different lithology soils. We sampled two parent materials at genetic horizons, and within a parent material, we selected two soils. Besides basic soil characterizations, a laboratory batch experiments were carried out to study the adsorption of arsenate and arsenite. Freundlich adsorption approaches were employed to investigate the adsorption of arsenate and arsenite in the soils. Freundlich isotherms fit arsenate and arsenite sorption data well with r2 values of 0.88?0.98 in most soils. Arsenate and arsenite adsorption varied with the soil properties, especially in clay composition and in the oxides of iron and aluminum. Arsenic adsorption parameters also varied with depth in parent materials, and loess derived soils had greater adsorption capacity as compared to alluvial soils in most of the adsorption parameters. This research concludes that the loess soils had higher arsenic adsorption capacity than the alluvial soils.

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3