Standard descriptive matrices in the identification of exophytophagous caterpillars

Author:

Trajkovic Aleksandra1ORCID,Lazarevic Maja1ORCID,Stankovic Sasa1ORCID,Popovic Milos1ORCID,Ilic-Milosevic Marijana1ORCID,Zikic Vladimir1ORCID

Affiliation:

1. Faculty of Sciences and Mathematics, Department of Biology and Ecology, University of Niš, Serbia

Abstract

Identification of exophytophagous lepidopteran larvae is a necessity for researchers in biological disciplines ranging from biodiversity inventorying to research in parasitoid evolution and species monitoring. The lack of expertise in the field jeopardizes the outcomes of further investigations and recording of the multilevel plasticity of juvenile Lepidoptera. This paper offers an improvement to the existing haphazard approach by developing 41 simplified characters that include 150 morphological, behavioral and autecological states and their delineation, visual validation, and a descriptive matrix for 83 heterogeneous species. By combining the states into all possible identification scenarios, the matrix revealed 582 morphological, habitat and resource polyphenisms for the mentioned species. The categorical nature of the data implied the use of categorical principal component analysis to visualize the discriminative capacity without character relationship assumptions. The object-point biplot was used to derive the K value for K-mode clustering, while the cluster membership was introduced as a labeling variable to further inspect the grouping pattern. The results of this descriptive analytic research indicate that descriptive matrices will allow continuous expansion and fine examination of many different species assemblages. From interactive identification keys to machine learning training, the presented framework can make data storage and interpretation significantly more attainable.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3