Affiliation:
1. BMS college of engineering, Department of Mathematics, Bangalore, India
2. Tongji University, Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Jiading, Shanghai, China + ENN-Tongji Clean Energy Institute of advanced studies, Shanghai, China
3. Sri Venkateswara University, Department of Mathematics, Tirupati, India
Abstract
In this paper, we study the effects of thermophoresis and non-linear convection on mixed convective flow of viscous incompressible rotating fluid due to rapidly rotating cone in a porous medium, whose surface temperature and concentration are higher than the temperature and concentration of its surrounding fluid. The governing equations for the conservation of mass, momentum, energy, and concentration are transformed, using similarity transformations and the solutions are obtained by employing shooting method that uses Runge-Kutta method and Newton-Raphson method. A comparison of the present results with previously published work for special cases shows a good agreement. The effects of temperature and concentration, ratio of angular velocities, relative temperature difference parameter, thermophoretic coefficients on velocity, temperature, and concentration profiles as well as tangential and circumferential skin friction coefficients, Nusselt number, and Sherwood number results are discussed in detail. The results indicate that the temperature is more influential compared to concentration. Also, the wall thermophoretic deposition velocity changes according to different values of pertinent parameter. Applications of the study arise in aerosol technology, space technology, astrophysics, and geophysics, which related to temperature-concentration-dependent density.
Publisher
National Library of Serbia
Subject
Renewable Energy, Sustainability and the Environment
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献