Elevated barometric pressure suppresses cell proliferation by delaying the G2/M phase and weakening integrin-mediated cell adhesion and actin assembly

Author:

Son Gwang-ic1,Lee Eunil1,Kim Mari1,Lee Seoeun1,Moon Yesol1,Kim Joonhee1

Affiliation:

1. Department of Preventive Medicine, College of Medicine, Korea University, Goryeodae-ro, Seongbuk-gu, Seoul, Republic of Korea + Department of Medical Science Graduate School, Korea University, Goryeodae-ro, Seongbuk-gu, Seoul, Republic of Korea

Abstract

Human cells are continuously exposed to various stress factors in their physiological environment. Evidence suggests that certain mechanical stress can affect cell cycle progression and cell proliferation. However, the signaling pathways involved in this process are not well understood. To investigate this, we developed a pressure chamber capable of producing an elevated barometric pressure (EBP) environment of 2?atmospheric absolute pressure (ATA). We then studied the effect of EBP on cell proliferation and its underlying mechanism. Our results show that EBP inhibited cell proliferation by delaying the G2/M phase. Specifically, EBP reduced the expression levels of cell adhesion-related genes and downregulated integrin subunit genes, resulting in weaker interaction between cells and extracellular matrix proteins. In addition, Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 homolog (Cdc42) activity was suppressed, and actin assembly was decreased. These findings suggest that the EBP-mediated G2/M phase delay is due to attenuated cell adhesion and actin cytoskeleton assembly, leading to the inhibition of cell proliferation. Our results provide a crucial molecular mechanism for how certain pressure (changes) can negatively regulate cell proliferation. These findings could potentially be used in the future to develop a pressure therapy to inhibit cell proliferation in cancer patients.

Publisher

National Library of Serbia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3