Thermophysical performances of (Sm1-xLux)3TaO7 (x = 0, 0.1, 0.3 and 0.5) ceramics

Author:

Sang Weiwei1,Zhang Hongsong2,Chen Huahui3,Wen Bin2,Li Xinchun2,Li Mengwei2

Affiliation:

1. School of Mechanical Electronic & Information Engineering, China University of Mining & Technology-Beijing, Beijing, PR China + School of Mechanical Engineering, Henan University of Engineering, PR China

2. School of Mechanical Engineering, Henan University of Engineering, PR China

3. School of Mechanical Electronic & Information Engineering, China University of Mining & Technology-Beijing, Beijing, PR China

Abstract

To optimize thermophysical performances, Sm3TaO7 was doped with Lu3+ and pressureless sintered at 1600 ?C. It was shown that Sm3+ is partly substituted by Lu3+ cations and the (Sm1-xLux)3TaO7 ceramics with a single pyrochlore structure are obtained.With increasing x value from 0 to 0.5, the band gap increases gradually from 4.677 to 4.880 eV. Owing to the enhanced phonon scattering caused by Lu3+ doping, the thermal conductivities at 800 ?C of the prepared samples are in the range of 0.95-1.44W?K?1?m?1. It was also confirmed that the phase transition is restrained effectively by substituting Sm3+ with Lu3+. Due to the reduction of crystal lattice energy and average electro-negativity difference, the thermal expansion coefficient (TEC) is heightened with increasing Lu content. TEC achieves the highest value (10.45 ? 10?6 K?1 at 1200 ?C) at the equal molar ratio between Sm3+ and Lu3+ cations (i.e. x = 0.5), which is much higher than those of 7YSZ and Sm2Zr2O7 ceramics.

Publisher

National Library of Serbia

Subject

Ceramics and Composites

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3