Distance based clustering of class association rules to build a compact, accurate and descriptive classifier

Author:

Mattiev Jamolbek1,Kavsek Branko2

Affiliation:

1. University of Primorska, Koper, Slovenia + Urgench State University, Urgench, Uzbekistan

2. University of Primorska, Koper, Slovenia + Jožef Stefan Institute, Ljubljana, Slovenia

Abstract

Huge amounts of data are being collected and analyzed nowadays. By using the popular rule-learning algorithms, the number of rule discovered on those ?big? datasets can easily exceed thousands. To produce compact, understandable and accurate classifiers, such rules have to be grouped and pruned, so that only a reasonable number of them are presented to the end user for inspection and further analysis. In this paper, we propose new methods that are able to reduce the number of class association rules produced by ?classical? class association rule classifiers, while maintaining an accurate classification model that is comparable to the ones generated by state-of-the-art classification algorithms. More precisely, we propose new associative classifiers, called DC, DDC and CDC, that use distance-based agglomerative hierarchical clustering as a post-processing step to reduce the number of its rules, and in the rule-selection step, we use different strategies (based on database coverage and cluster center) for each algorithm. Experimental results performed on selected datasets from the UCI ML repository show that our classifiers are able to learn classifiers containing significantly fewer rules than state-of-the-art rule learning algorithms on datasets with a larger number of examples. On the other hand, the classification accuracy of the proposed classifiers is not significantly different from state-of-the-art rule-learners on most of the datasets.

Publisher

National Library of Serbia

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3