Brief modeling equation for metal-oxide; TGS type gas sensors

Author:

Moshayedi Ata1,Kazemi Ensieh2,Tabatabaei Mohammad2,Liao Liefa1

Affiliation:

1. School Of Information Engineering, Jiangxi University Of Science And Technology, Ganzhou, Jiangxi, China

2. Department of Electrical engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran

Abstract

The main aim of this research is to propose a mathematical equation in order to reduce the model parameters based on temperature, humidity and gas density variation in metal-oxide semi-conductive sensors. Also the Arduino based Designed E-nose with the capability to change the temperature and humidity is used to obtain the real sensor?s response in various conditions. The sampling procedure consists of three sectors: fixed temperature and fixed humidity, variable temperature and fixed humidity, fixed temperature and variable humidity, which are stored in Excel software and analyzed with MATLAB. The output response is based on combination of First-Order Plus Dead Time (FOPDT) which has the Minimum Parameters system (MPS) to investigate the behavior of the sensors. Finally, after evaluating the models with the real sensor response and bi-sentence exponentials, it is suggested that the MPS model introduces fewer and simpler parameters, which helps to simulate the sensor?s behavior more accurately and consequently in order to draw a better short response.

Publisher

National Library of Serbia

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3