LTR-MDTS structure - a structure for multiple dependent time series prediction

Author:

Pecev Predrag1,Rackovic Milos2

Affiliation:

1. Technical faculty “Mihajlo Pupin”, Zrenjanin

2. Faculty of Sciences, Novi Sad

Abstract

The subject of research presented in this paper is to model a neural network structure and appropriate training algorithm that is most suited for multiple dependent time series prediction / deduction. The basic idea is to take advantage of neural networks in solving the problem of prediction of synchronized basketball referees? movement during a basketball action. Presentation of time series stemming from the aforementioned problem, by using traditional Multilayered Perceptron neural networks (MLP), leads to a sort of paradox of backward time lapse effect that certain input and hidden layers nodes have on output nodes that correspond to previous moments in time. This paper describes conducted research and analysis of different methods of overcoming the presented problem. Presented paper is essentially split into two parts. First part gives insight on efforts that are put into training set configuration on standard Multi Layered Perceptron back propagation neural networks, in order to decrease backwards time lapse effects that certain input and hidden layers nodes have on output nodes. Second part of paper focuses on the results that a new neural network structure called LTR - MDTS provides. Foundation of LTR - MDTS design relies on a foundation on standard MLP neural networks with certain, left-to-right synapse removal to eliminate aforementioned backwards time lapse effect on the output nodes.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3