Estimation of the volume of distribution of some pharmacologically important compounds from their structural descriptors

Author:

Fatemi Mohammad1,Ghorbannezhad Zahra1

Affiliation:

1. University of Mazandaran, Faculty of Chemistry, Chemometrics Laboratory, Babolsar, Iran

Abstract

Quantitative structure-activity relationship (QSAR) approaches were used to estimate the volume of distribution (Vd) using an artificial neural network (ANN). The data set consisted of the volume of distribution of 129 pharmacologically important compounds, i.e., benzodiazepines, barbiturates, NSAIDs, tricyclic anti-depressants and some antibiotics, such as betalactams, tetracyclines and quinolones. The descriptors, which were selected by stepwise variable selection methods, were: the Moriguchi octanol-water partition coefficient; the 3D-MoRSEsignal 30, weighted by atomic van der Waals volumes; the fragmentbased polar surface area; the d COMMA2 value, weighted by atomic masses; the Geary autocorrelation, weighted by the atomic Sanderson electronegativities; the 3D-MoRSE - signal 02, weighted by atomic masses, and the Geary autocorrelation - lag 5, weighted by the atomic van der Waals volumes. These descriptors were used as inputs for developing multiple linear regressions (MLR) and artificial neural network models as linear and non-linear feature mapping techniques, respectively. The standard errors in the estimation of Vd by the MLR model were: 0.104, 0.103 and 0.076 and for the ANN model: 0.029, 0.087 and 0.082 for the training, internal and external validation test, respectively. The robustness of these models were also evaluated by the leave-5-out cross validation procedure, that gives the statistics Q2 = 0.72 for the MLR model and Q2 = 0.82 for the ANN model. Moreover, the results of the Y-randomization test revealed that there were no chance correlations among the data matrix. In conclusion, the results of this study indicate the applicability of the estimation of the Vd value of drugs from their structural molecular descriptors. Furthermore, the statistics of the developed models indicate the superiority of the ANN over the MLR model.

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3