Experimental and CFD simulation study of shell and tube heat exchangers with different baffle segment configurations

Author:

Zahid Hamid1,Mubashar Abdullah1,Waqas Muhammad2,Siddiqi Muhammad3,Munir Umair1,Naqvi Syed1

Affiliation:

1. Mechanical Engineering Deapartment, NFC-IEFR, Faisalabad, Pakistan

2. Department of Mechanical Engineering, College of Engineering and Technology, University of Sargodha, Sargodha, Pakistan

3. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China

Abstract

Sell and tube heat exchanger (STHX) is an implement that has tremendous applications in numerous industrial processes and research areas. In this study, the commercial software ANSYS is used for 3-D CFD to compare the thermo-hydraulic performance of STHX with recently developed tri-angular (TRI) baffles, and tri-flower (TF) baffles with conventional segmental (SG) baffles at different flow rates. Simulations have been performed to analyze the heat transfer coefficient, pressure drop, and overall thermo-hydraulic performance among the recently developed TRI-STHX, TF-STHX and conventional SG-STHX. The thermo-hydraulic performance of the numerical model of SG-STHX shows the promising results while validating it with the experimental results, Esso and Kern methods. Then the same study is carried out for comparing the two novel baffles with segmental baffle. The results depict that, novel baffles are much appreciable in increasing heat transfer coefficient. The TF-STHX offers a greater heat transfer coefficient than all others but also offers a higher pressure drop at the same flow rate. Computing the comprehensive performance, hs??p, the TRI-STHX offers a prominent increment in thermo-hydraulic performance compared to others. Moreover by inserting twist?ed tapes at the tube side, there is noticeable increase in heat transfer coefficient which tends to increase the thermo-hydraulic performance of STHX. By comparing the flow patterns of TRI-STHX and SG-STHX, the novel TRI-STHX shows the reduction in shell-side induced vibrations and hence helped to increase the overall efficiency of the STHX.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3