Influence of Er3+ doping on the mechanical and thermophysical properties of (ErxY1-x)3Al5O12 ceramics

Author:

Wang Xuanli1,Xing Jinxin2,Xie Min2,Mu Rende3,Song Xiwen2

Affiliation:

1. Inner Mongolia Key Laboratory of Advanced Ceramics and Device, School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, China + Collaborative Innovation Center of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou, China

2. Inner Mongolia Key Laboratory of Advanced Ceramics and Device, School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, China

3. Key Laboratory of Advanced Corrosion and Protection for Aviation Materials, Beijing Institute of Aeronautical Materials, Aero Engine Corporation of China, Beijing, China

Abstract

In this work, Er3+ was selected to replace Y3+ in the yttrium aluminium garnet (YAG) in order to improve its mechanical and thermophysical properties. A series of (ErxY1-x)3Al5O12 (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) ceramics were prepared by solid-state synthesis method at 1000 ?C and finally sintered at 1600 ?C for 5 h. The microstructure and morphology of the prepared ceramics were investigated. The results showed that all Er3+ doped Y3Al5O12 ceramics exhibited single garnet-type YAG phase and good compactness. With the increase of Er3+ doping concentration, the thermal conductivity of the (ErxY1-x)3Al5O12 ceramics decreased slowly and then increased subsequently. Among the investigated specimens, the (Er0.7Y0.3)3Al5O12 had the lowest thermal conductivity (1.51W/m?K, at 1000 ?C), which was about 28% lower than that of the pure YAG (2.1W/m?K, at 1000 ?C). As the Er3+ doping concentration increased, the thermal expansion coefficient of the (ErxY1-x)3Al5O12 ceramics hardly changed, remaining around 9.08 ? 10?6 K?1 at 1200 ?C. Moreover, when the Er3+ doping concentration exceeded 0.5, the mechanical properties of the (ErxY1-x)3Al5O12 ceramics increased suddenly. Specifically, the hardness increased from 14.28 to 16.53GPa and the bending strength increased from 231.74 to 324.49MPa.

Publisher

National Library of Serbia

Subject

Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3