Photodegradation of selected pesticides: Photocatalytic activity of bare and PANI-modified TiO2 under simulated solar irradiation

Author:

Lazarevic Marina1,Despotovic Vesna1ORCID,Sojic-Merkulov Daniela1,Banic Nemanja1ORCID,Fincur Nina1,Cetojevic-Simin Dragana2ORCID,Comor Mirjana3ORCID,Abramovic Biljana1ORCID

Affiliation:

1. University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Novi Sad, Serbia

2. University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia

3. University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade, Serbia

Abstract

In this paper the efficiency of photocatalytic degradation of different pesticides was investigated using bare TiO2 and TiO2 nanoparticles modified with polyaniline under simulated solar irradiation. Sulcotrione showed the highest percentage degradation and further experiments were related to this herbicide. Mineralization and cytotoxicity of the starting compound and intermediate species formed during the decomposition in double distilled water (DDW), as well as the efficiency of removal from various environmental waters were studied. The contents of the most abundant ions present in the River Danube were simulated in DDW and their influence was evaluated. It was found that cytotoxicity was in all cases below 11 % and the efficiency of photocatalytic degradation in environmental waters was decreased compared with DDW. Furthermore, addition of different scavengers revealed that the main path of degradation is through holes, while the presence of H2O2 decreased and KBrO3 increased the efficiency of photocatalytic degradation compared with the system without the mentioned electron acceptors.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3