An effective method for determining consensus in large collectives

Author:

Dang Dai1,Nguyen Thanh2,Hwang Dosam3

Affiliation:

1. Department of Computer Engineering, Yeungnam University, Gyeongsan, Republic of Korea + Vietnam - Korea University of Information and Communication Technology, The University of Danang, Danang, Vietnam

2. Department of Applied Informatics, Faculty of Computer Science and Management, Wrocław University of Science and Technology, Wrocław, Poland

3. Department of Computer Engineering, Yeungnam University, Gyeongsan, Republic of Korea

Abstract

Nowadays, using the consensus of collectives for solving problems plays an essential role in our lives. The rapid development of information technology has facilitated the collection of distributed knowledge from autonomous sources to find solutions to problems. Consequently, the size of collectives has increased rapidly. Determining consensus for a large collective is very time-consuming and expensive. Thus, this study proposes a vertical partition method (VPM) to find consensus in large collectives. In the VPM, the primary collective is first vertically partitioned into small parts. Then, a consensus-based algorithm is used to determine the consensus for each smaller part. Finally, the consensus of the collective is determined based on the consensuses of the smaller parts. The study demonstrates, both theoretically and experimentally, that the computational complexity of the VPM is lower than 57.1% that of the basic consensus method (BCM). This ratio reduces quickly if the number of smaller parts reduces.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Deep Learning for Obscene Language Detection in Vietnamese Social Media;The 12th Conference on Information Technology and Its Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3