Resistance to frost action and microbiological corrosion of novel ceramic composites

Author:

Jovanov Vojo1ORCID,Vucetic Snezana2ORCID,Markov Sinisa2,Angjusheva Biljana1ORCID,Fidancevska Emilija1,Ranogajec Jonjaua2ORCID

Affiliation:

1. Ss. Cyril and Methodius University in Skopje, Faculty of Technology and Metallurgy, Skopje, Republic of North Macedonia

2. University of Novi Sad, Faculty of Technology, Novi Sad, Serbia

Abstract

This work illustrates the prediction of frost action mechanisms on ceramic compacts and their biocorrosion resistance to fungus action. The ceramic compacts were produced from two raw materials: coal fly ash (40 wt.%) and clay material (60 wt.%). The ceramics models were made in laboratory conditions by pressing (P = 45 MPa), drying (105?C, 3h), and sintering (1100?C, 1 h; heating rates 3?C/min and 10?C/min.). The mechanisms responsible for the deterioration of the designed ceramic compacts were defined based on the values of the total porosity, pore size distribution, pore critical radius, and the Maage factor, as well as on the values of water permeability. The biocorrosion process was investigated using Aspergillus niger fungus as a model microorganism. The different degrees of fungus colonization on the designed compacts were comparatively analyzed based on the Scanning Electron Microscopy investigation results. The gained results are encouraging as they show that the utilization of fly ash (40 wt.%) in ceramic composites is possible without significant deterioration of their durability (frost action and microbiological corrosion resistance) compared with the ones whose production was based only on clay material.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3