Investigation of Li2O and TiO2 effects on MAS glass-ceramic produced from waste material

Author:

Canikoğlu Nuray1,Özarslan Cansu2,Toplan Özkan H.2

Affiliation:

1. Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Sakarya, Turkey + Sakarya University Research, Development and Application Center (SARGEM), Esentepe Campus, Sakarya, Turkey

2. Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Sakarya, Turkey

Abstract

Among glass-ceramics, MgO-Al2O3-SiO2 (MAS) system occupies an important place due to its good characteristics. In this study, the magnesite waste being an industrial waste was evaluated for the production of MAS glass ceramics and the properties of the glass-ceramics produced were examined. For this purpose, mixtures were prepared using magnesite waste, quartz, kaolin and alumina raw materials according to the chemical composition of cordierite. Furthermore, in the mixtures prepared with the additions of TiO2 and Li2O added as a nucleating agent the effects of these additions on the crystallization temperatures were investigated. Crystallization temperatures of the glass samples were determined by the differential thermal analysis (DTA) and characterized by X-ray analysis (XRD). Subsequently, the glass-ceramic transformation was performed at 1000?C, 1050?C, 1100?C, 1150?C and 1200?C for 1, 3, 5 and 10 hours. The products obtained were analyzed using X-ray (XRD) and scanning electron microscope (SEM). In addition, the microhardness of glass-ceramic products and their corrosion resistance in an acidic environment were measured and compared in this study.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3