SRDF_QDAG: An efficient end-to-end RDF data management when graph exploration meets spatial processing

Author:

Yousfi Houssameddine1,Mesmoudi Amin2,Hadjali Allel3,Matallah Houcine4,Benkabou Seif-Eddine2

Affiliation:

1. LIAS, ENSMA Engineering School, Futuroscope Chasseneuil Cedex, France + LRIT, Science Faculty University Abu Bekr Belkaid, Tlemcen, Algeria

2. LIAS, University of Poitiers, POITIERS Cedex, France

3. LIAS, ENSMA Engineering School, Futuroscope Chasseneuil Cedex, France

4. LRIT, Science Faculty University Abu Bekr Belkaid, Tlemcen, Algeria

Abstract

The popularity of RDF has led to the creation of several datasets (e.g., Yago, DBPedia) with different natures (graph, temporal, spatial). Different extensions have also been proposed for SPARQL language to provide appropriate processing. The best known is GeoSparql, that allows the integration of a set of spatial operators. In this paper, we propose new strategies to support such operators within a particular TripleStore, named RDF QDAG, that relies on graph fragmentation and exploration and guarantees a good compromise between scalability and performance. Our proposal covers the different TripleStore components (Storage, evaluation, optimization). We evaluated our proposal using spatial queries with real RDF data, and we also compared performance with the latest version of a popular commercial TripleStore. The first results demonstrate the relevance of our proposal and how to achieve an average gain of performance of 28% by choosing the right evaluation strategies to use. Based on these results, we proposed to extend the RDF QDAG optimizer to dynamically select the evaluation strategy to use depending on the query. Then, we show also that our proposal yields the best strategy for most queries.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Topic Recommendation Control Method Based on Topic Relevancy and R-tree Index;INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL;2024-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3