Effects of connecting a scattered solar generation unit to the grid on the cloud passage using optimization algorithms

Author:

Aljbori Ali1,Zarif Mahdi1

Affiliation:

1. Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Abstract

Today, limitation of fossil fuel resources and other issues such as the possibility of the depletion of fossil energy reserves, global warming, environmental pollution, price instability, and the growing need for industrial and urban centers for energy have prompted the international community to seek appropriate alternatives. Such examples are nuclear energy, solar energy, geothermal energy, wind energy, and ocean waves. Renewable energy is generated owing to the simplicity of the applied technology compared to nuclear energy technologies. On the other hand, such energies play a key role in new energy systems in the world similar to nuclear waste. The increasing use of renewable energies has given rise to significant complications. One of the main operational issues in this regard is the uncertainty of electricity generation by solar power plants, which is caused by the passage of clouds. The present study aimed to investigate the effects of cloud passage on the production of solar power plants. Initially, a control system was designed to control a high-penetration solar power plant in the network, and the maximum allowable percentage of penetration was calculated for different loads. For this purpose, three algorithms (DE, PSO, and ICA) were used to determine the MPPT of the solar arrays in shady conditions, as well as the MPPT point of the solar arrays. According to the results, the colonial competition algorithm was faster compared to the other algorithms.

Publisher

National Library of Serbia

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3