Light induced polymerization of resin composite restorative materials

Author:

Blazic Larisa1ORCID,Markovic Dubravka1,Djuric Milanko1

Affiliation:

1. Klinika za stomatologiju, Medicinski fakultet, Novi Sad

Abstract

Introduction Dimensional stability of polymer-based dental materials is compromised by polymerization reaction of the monomer. The conversion into a polymer is accompanied by a closer packing of molecules, which leads to volume reduction called curing contraction or polymerization shrinkage. Curing contraction may break the adhesion between the adhesive system and hard tooth tissues forming micrographs which may result in marginal deterioration, recurrent caries and pulp injury. Polymerization shrinkage of resin-based restorative dental materials Polymerization of the organic phase (monomer molecules) of resin-based dental materials causes shrinkage. The space occupied by filler particles is not associated with polymerization shrinkage. However, high filler loading within certain limits, can contribute to a lesser curing contraction. Polymerization shrinkage stress and stress reduction possibilities Polymerization shrinkage stress of polymer-based dental resins can be controlled in various ways. The adhesive bond in tooth-restoration interface guides the contraction forces to cavity walls. If leakage occurs, complications like secondary caries and pulpal irritation may jeopardize the longevity of a restoration. Stress relieve can be obtained by modifications of the monomer and photoinitiator, or by specially designed tooth preparation and application of bases and liners of low modulus of elasticity. The polymerization contraction can be compensated by water absorption due to oral cavity surrounding. The newest approach to stress relief is based on modulation of polymerization initiation. Conclusion This work deals with polymerization contraction and how to achieve leak-proof restoration. Restorative techniques that may reduce the negative effect of polymerization shrinkage stress need further research in order to confirm up-to-date findings.

Publisher

National Library of Serbia

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3