Modeling of photovoltaic modules using a gray-box neural network approach

Author:

Rankovic Aleksandar1ORCID,Cetenovic Dragan1

Affiliation:

1. Faculty of Technical Sciences, Čačak

Abstract

This paper proposes a gray-box approach to modeling and simulation of photo-voltaic modules. The process of building a gray-box model is split into two components (known, and unknown or partially unknown). The former is based on physical principles while the latter relies on functional approximator and data-based modeling. In this paper, artificial neural networks were used to construct the functional approximator. Compared to the standard mathematical model of photovoltaic module which involves the three input variables - solar irradiance, ambient temperature, and wind speed- a gray-box model allows the use of additional input environmental variables, such as wind direction, atmospheric pressure, and humidity. In order to improve the accuracy of the gray-box model, we have proposed two criteria for the classification of the daily input/output data whereby the former determines the season while the latter classifies days into sunny and cloudy. The accuracy of this model is verified on the real-life photo-voltaic generator, by comparing with single-diode mathematical model and artificial neural networks model towards measured output power data.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3