Catalytic center of cytochrome c oxidase: Effects of protein environment on pKa values of cub histidine ligands

Author:

Popovic Dragan1ORCID,Djordjevic Ivana1

Affiliation:

1. Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, University of Belgrade, Belgrade, Serbia

Abstract

The molecular mechanism by which electron transfer (ET) is coupled to proton pumping in cytochrome oxidase is one of the main unsolved problems in biochemistry. Particularly, the nature and position of the proton-loading site is under dispute. The CuB complex has three ligated histidines, whereas only His290 and His291 are ionizable sites with the same pKa values in aqueous solution, but apparently quite different ones within the enzyme. Earlier, a model of proton pumping with the central role of His290 was proposed. Recent calculations indicate that the His291 ligand of the CuB center might play the role of the pumping element, since its protonation state depends on the oxidation state of the binuclear complex (BNC). The present electrostatic study was applied to assess the role of the protein environment on the acidity of the two histidines. Their pKa values and effects of different energy terms were evaluated to discover the nature of their diverse behavior in the enzyme. Here, a new set of pKa values for the non-standard model compounds within the BNC was applied. The enhanced results are compared with results of previous studies in the light of the plausible proton pumping mechanism. The obtained microscopic and apparent pKa values in the oxidized state of BNC are virtually the same, indicating that deprotonated form of His291 accounts for the large pKa increase of His290, since then both titratable sites on then CuB center cannot simultaneously be in the charged state. The present results support the underlined His291 pumping model.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3