Effects of increased proliferation of human adipose tissue-derived mesenchymal stem cells by sphingosylphosphorylcholine on the survival of cryopreserved fat grafts

Author:

Bae Yong1,Song Ji2,Nam Kyeong1,Kim Joo1,Nam Su3

Affiliation:

1. Department of Plastic and Reconstructive Surgery, School of Medicine, Pusan National University, Pusan, Republic of Korea

2. Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do, Republic of Korea

3. Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do, Republic of Korea Department of Plastic and Reconstructive Surgery, School of Medicine, Pusan National Universi

Abstract

The use of cryopreserved adipose tissue for soft-tissue augmentation is common, but the unpredictability of fat graft viability remains a limitation. Human adipose-derived stem cells (hADSC) have been introduced to enhance viability and improve the survival of transplanted fat tissue. Sphingosylphosphorylcholine (SPC) is a bioactive lipid molecule involved in various cellular responses. SPC stimulates the proliferation of various cell types such as hADSC. We demonstrated the effects of hADSC and SPC on the survival of cryopreserved fat grafts in nude mice. The cryopreserved fat grafts were treated with hADSC or hADSC+SPC, and a normal saline (control) mixture in BALB/c male nude mice. We examined the weight and volume of the mice in each group (n=11) at 8 weeks after transplantation to evaluate the survival of the fat tissue. The hADSC group showed increased weight and volume compared with the control group. The hADSC+SPC group showed a higher survival rate in terms of weight and volume than the control or hADSC group. In addition, the hADSC+SPC treatment significantly increased the expression of angiogenic factors. These results suggest the potential clinical utility of hADSC+SPC.

Publisher

National Library of Serbia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hormesis and adult adipose-derived stem cells;Pharmacological Research;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3