pH control in sodium chlorate cell for energy efficiency using PSO-FOPID controller

Author:

Sreekumar Sreepriya1,Kallingal Aparna2,Mundakkal Lakshmanan Vinila1

Affiliation:

1. Department of Chemical Engineering, National Institute of Technology, NIT Campus, Calicut, India + Department of Applied Electronics and Instrumentation, Adi Shankara Institute of Engineering and Technology, Kalady, India

2. Department of Chemical Engineering, National Institute of Technology, NIT Campus, Calicut, India

Abstract

Industrial sodium chlorate production is a highly energy-intensive electro-chemical process. If the pH of the chlorate cell is not controlled, the current efficiency drops from 99% to as low as 66.66%. Hence control of chlorate cell pH is very significant for energy-efficient sodium chlorate production. This study puts forward a fractional order PID controller for controlling the pH of the sodium chlorate cell. The tuning of FOPID controller variables is affected by employing particle swarm optimization. The highlight of the controller is that it is flexible, easy to deploy and the time of computation is significantly low as few parameters are needed to be adjusted in PSO. The performance analysis of the suggested FOPID-PSO controller was studied and compared with the traditional PI controller and PID controller using time-domain provisions like settling time, rise time and peak overshoot and error indicators like integral square error (ISE), integral absolute error (IAE), and integral time absolute error (ITAE). FOPID controller employing PSO proved to perform well compared to conventional controllers with 0.5 sec settling time and 0.1 sec rise time. This demonstrates that the FOPID-PSO controller has better setpoint tracking, which is very essential for the process under consideration.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Internal model control of cumene process using analytical rules and evolutionary computation;Chemical Industry and Chemical Engineering Quarterly;2024

2. Robust control of isopropyl benzene production process using H loop shaping control scheme;Journal of Control and Decision;2022-11-21

3. An extreme learning machine model optimized based on improved golden eagle algorithm for wind power forecasting;2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2022-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3